If it's not what You are looking for type in the equation solver your own equation and let us solve it.
126x^2-504x=0
a = 126; b = -504; c = 0;
Δ = b2-4ac
Δ = -5042-4·126·0
Δ = 254016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{254016}=504$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-504)-504}{2*126}=\frac{0}{252} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-504)+504}{2*126}=\frac{1008}{252} =4 $
| 1/5(d+3.5)=-2.4 | | 5+3(4x+7)=62 | | X+1÷x-1=x-1÷x-2 | | 5+3(4x+7=62 | | 9.1+0.2x=15 | | (8+2x)5=4x+10 | | 5x+8x-2x-5=39 | | 4(x+5=36 | | 435/12x11= | | 53-4x=5 | | -7(2x-5)+5(3x-3)-9=6-5 | | 3(4+-a)=2(6+a) | | 5x+2x=58-9 | | 1/3(7x-1)=2x+3 | | 12x²+17x=5 | | 4x+3x+3=48 | | 9x+8x+4x-5=34 | | 12x²+18x=x+5 | | 6(m+5=18 | | x+2x-1+0.5x=51.50 | | m÷8-16=-52 | | 3x+48=5x+2 | | 2/3x=9/7 | | x+0.15x=97.75 | | 0=-7/3x+14 | | x2+3x-154=0 | | 5x+40=8x+37 | | 2n+4=145 | | 17^-x-7=4^-2x | | 6(5x+3)-7=101 | | 6x+42=8x+10 | | 26z=-29 |