128=80+64t+-16t2

Simple and best practice solution for 128=80+64t+-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 128=80+64t+-16t2 equation:



128=80+64t+-16t^2
We move all terms to the left:
128-(80+64t+-16t^2)=0
We use the square of the difference formula
-(80+64t-16t^2)+128=0
We get rid of parentheses
16t^2-64t-80+128=0
We add all the numbers together, and all the variables
16t^2-64t+48=0
a = 16; b = -64; c = +48;
Δ = b2-4ac
Δ = -642-4·16·48
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32}{2*16}=\frac{32}{32} =1 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32}{2*16}=\frac{96}{32} =3 $

See similar equations:

| 12x+6=32 | | 216^(1-3a)=36 | | 4+-4x=18 | | (2x+8)(-3-x)=0 | | -6t+8=-8-8t-8t | | 4=-4x=18 | | 3,5(2z+4)+9z=18 | | 4z+0=z-3 | | 2m+10=3+6m | | 8(x+3)+2x=44 | | -(6x+5)-(-5x-8)=-1 | | 1.2(3y-4)-0.3(2y-6)=0 | | 12(2a+5)=3(a-8) | | 6x+9=xxx | | (3x-1)(x+2)+5x=(2x+1)(x-3)+x^{2} | | 6x-2=-1+6x | | 6x-2=-2(1/2-3x) | | 4.2x=53 | | 0.12(12)+0.03x=0.06(6+x) | | 0.12(12)+0.03=0.06(6+x) | | 70x=161 | | -28v=-10 | | 5+5x=-3x-4 | | b=8=14 | | 0.24(12)+0.04x=0.12(12+x) | | 0.24(12)+0.04x=0.12(12=x) | | 806-x=300 | | -21x^2-11x+2=0 | | 12.6x=30 | | -21x^-11x+2=0 | | f-8=-5 | | s-6=3 |

Equations solver categories