If it's not what You are looking for type in the equation solver your own equation and let us solve it.
129.6+9/5x=288-4x
We move all terms to the left:
129.6+9/5x-(288-4x)=0
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
9/5x-(-4x+288)+129.6=0
We get rid of parentheses
9/5x+4x-288+129.6=0
We multiply all the terms by the denominator
4x*5x-288*5x+(129.6)*5x+9=0
We multiply parentheses
4x*5x-288*5x+648x+9=0
Wy multiply elements
20x^2-1440x+648x+9=0
We add all the numbers together, and all the variables
20x^2-792x+9=0
a = 20; b = -792; c = +9;
Δ = b2-4ac
Δ = -7922-4·20·9
Δ = 626544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{626544}=\sqrt{144*4351}=\sqrt{144}*\sqrt{4351}=12\sqrt{4351}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-792)-12\sqrt{4351}}{2*20}=\frac{792-12\sqrt{4351}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-792)+12\sqrt{4351}}{2*20}=\frac{792+12\sqrt{4351}}{40} $
| X+2+12=3x+4 | | X=18y-62 | | 10b+1.5÷6=8.8 | | -6(3x-7)+36=24 | | -0.10(10)+0.10x=0.05(x-8) | | 4y-3.8=8.2 | | 3a-3.25=5.75 | | .03x-0.08(10+x)=0 | | 580-A)x4=1588 | | 5d-8=2d+1 | | (x+1)+x=-39 | | 0.16(y-3)+0.02y=0.14y-0.5 | | 5b-6=7 | | 4x=1÷2 | | 32n^2-24n=0 | | (x+3)^2=x+3 | | 5b-6÷2=7 | | -x^2-5x+7=0 | | (X+3)^2=(x+3) | | 3l/2=1/2 | | 23+4j+2j-13=11j+18-5j-8 | | 8y+18=2 | | 4x-7=3×+6 | | 22,451=100x | | 15+q+8q-9=16q+11-7q-5 | | z2−6z=0 | | -8×+3y=-2 | | -8(6x-2)+7(7x-1)-6=8-3 | | X+y=27/4 | | 12x-(3x-12)=3+8x | | |5-4x|-3=4 | | 16-1/5(35h+10)=-8h-13 |