If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 12 = (7n + -2)(n + 3) Reorder the terms: 12 = (-2 + 7n)(n + 3) Reorder the terms: 12 = (-2 + 7n)(3 + n) Multiply (-2 + 7n) * (3 + n) 12 = (-2(3 + n) + 7n * (3 + n)) 12 = ((3 * -2 + n * -2) + 7n * (3 + n)) 12 = ((-6 + -2n) + 7n * (3 + n)) 12 = (-6 + -2n + (3 * 7n + n * 7n)) 12 = (-6 + -2n + (21n + 7n2)) Combine like terms: -2n + 21n = 19n 12 = (-6 + 19n + 7n2) Solving 12 = -6 + 19n + 7n2 Solving for variable 'n'. Combine like terms: 12 + 6 = 18 18 + -19n + -7n2 = -6 + 19n + 7n2 + 6 + -19n + -7n2 Reorder the terms: 18 + -19n + -7n2 = -6 + 6 + 19n + -19n + 7n2 + -7n2 Combine like terms: -6 + 6 = 0 18 + -19n + -7n2 = 0 + 19n + -19n + 7n2 + -7n2 18 + -19n + -7n2 = 19n + -19n + 7n2 + -7n2 Combine like terms: 19n + -19n = 0 18 + -19n + -7n2 = 0 + 7n2 + -7n2 18 + -19n + -7n2 = 7n2 + -7n2 Combine like terms: 7n2 + -7n2 = 0 18 + -19n + -7n2 = 0 Begin completing the square. Divide all terms by -7 the coefficient of the squared term: Divide each side by '-7'. -2.571428571 + 2.714285714n + n2 = 0 Move the constant term to the right: Add '2.571428571' to each side of the equation. -2.571428571 + 2.714285714n + 2.571428571 + n2 = 0 + 2.571428571 Reorder the terms: -2.571428571 + 2.571428571 + 2.714285714n + n2 = 0 + 2.571428571 Combine like terms: -2.571428571 + 2.571428571 = 0.000000000 0.000000000 + 2.714285714n + n2 = 0 + 2.571428571 2.714285714n + n2 = 0 + 2.571428571 Combine like terms: 0 + 2.571428571 = 2.571428571 2.714285714n + n2 = 2.571428571 The n term is 2.714285714n. Take half its coefficient (1.357142857). Square it (1.841836734) and add it to both sides. Add '1.841836734' to each side of the equation. 2.714285714n + 1.841836734 + n2 = 2.571428571 + 1.841836734 Reorder the terms: 1.841836734 + 2.714285714n + n2 = 2.571428571 + 1.841836734 Combine like terms: 2.571428571 + 1.841836734 = 4.413265305 1.841836734 + 2.714285714n + n2 = 4.413265305 Factor a perfect square on the left side: (n + 1.357142857)(n + 1.357142857) = 4.413265305 Calculate the square root of the right side: 2.10077731 Break this problem into two subproblems by setting (n + 1.357142857) equal to 2.10077731 and -2.10077731.Subproblem 1
n + 1.357142857 = 2.10077731 Simplifying n + 1.357142857 = 2.10077731 Reorder the terms: 1.357142857 + n = 2.10077731 Solving 1.357142857 + n = 2.10077731 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.357142857' to each side of the equation. 1.357142857 + -1.357142857 + n = 2.10077731 + -1.357142857 Combine like terms: 1.357142857 + -1.357142857 = 0.000000000 0.000000000 + n = 2.10077731 + -1.357142857 n = 2.10077731 + -1.357142857 Combine like terms: 2.10077731 + -1.357142857 = 0.743634453 n = 0.743634453 Simplifying n = 0.743634453Subproblem 2
n + 1.357142857 = -2.10077731 Simplifying n + 1.357142857 = -2.10077731 Reorder the terms: 1.357142857 + n = -2.10077731 Solving 1.357142857 + n = -2.10077731 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.357142857' to each side of the equation. 1.357142857 + -1.357142857 + n = -2.10077731 + -1.357142857 Combine like terms: 1.357142857 + -1.357142857 = 0.000000000 0.000000000 + n = -2.10077731 + -1.357142857 n = -2.10077731 + -1.357142857 Combine like terms: -2.10077731 + -1.357142857 = -3.457920167 n = -3.457920167 Simplifying n = -3.457920167Solution
The solution to the problem is based on the solutions from the subproblems. n = {0.743634453, -3.457920167}
| c/6=60 | | X-1.4=3.2 | | 5x+13-2x=22 | | 5/2(-6/5) | | 1250/x=21 | | 2xy*2xy=0 | | 40d+5=85 | | 7n+6-5n=-12 | | 3a+2-3a+3=-1 | | 15n^2=24n-9 | | x+3x+16=116 | | 2(3.6)=2(2.6)+x | | 5x+3-10=4 | | 1.666666667(12-6x)=5(x+4) | | 5/2n/8 | | 9/14--1/2 | | -6w+8=-40 | | b+3.2b+(b+45)+90+2b-90= | | 3x+1=3y | | 2(3.14)(3.6)=2(3.14)(2.6)+x | | 579+x=700 | | -8b-4=20 | | 12=2d*3.2 | | 2/5=4j/10 | | 2/3g=-18 | | cosx/4=17/130 | | 135=x-29 | | 4b-4-7b-3= | | -c-4=5c | | 3x36/36-42 | | -n-2n=-7-14 | | 5sen(x+2)=3 |