If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12u^2+26u+14=0
a = 12; b = 26; c = +14;
Δ = b2-4ac
Δ = 262-4·12·14
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2}{2*12}=\frac{-28}{24} =-1+1/6 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2}{2*12}=\frac{-24}{24} =-1 $
| 4+x/7=12 | | 5p+4/3=12/18 | | 50=4/3x+7 | | x+5=95 | | 10/3=k+1/k | | 10+7x=12+6x | | 3y2-26y-9=0 | | 3(5-4x)-6=6x+5 | | 0.2x-5=12 | | 9(x-2)/3=3(x+6)/9 | | -81=-9m | | -45x-2/3=x-3/4 | | x(15+0.50)=x(25+0.25) | | -6x-11+7x-5=-6 | | 3x+17=11x+9 | | 4+6n=7+2n | | (3x+4)/(2x-3)=0 | | 5x+4x-39=65-4x | | n/3-9=-21 | | x/(30)=123/5 | | 7-5x+9x=35 | | 10x—9=81 | | n/10+1=-1 | | 63-8x=21-x | | 30x+35=135 | | -3(1+4n)-6n=19-7n | | 7x+35+12=5 | | R-6=6+5r | | 1=1/5(25y-20) | | -9–26y=-3y2 | | 4(c+3)=5c-3 | | -6(p+7)-5=5p+3(4p-8) |