If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x(13x-19)-(11x-15)=25-(17-13x)
We move all terms to the left:
12x(13x-19)-(11x-15)-(25-(17-13x))=0
We add all the numbers together, and all the variables
12x(13x-19)-(11x-15)-(25-(-13x+17))=0
We multiply parentheses
156x^2-228x-(11x-15)-(25-(-13x+17))=0
We get rid of parentheses
156x^2-228x-11x-(25-(-13x+17))+15=0
We calculate terms in parentheses: -(25-(-13x+17)), so:We add all the numbers together, and all the variables
25-(-13x+17)
determiningTheFunctionDomain -(-13x+17)+25
We get rid of parentheses
13x-17+25
We add all the numbers together, and all the variables
13x+8
Back to the equation:
-(13x+8)
156x^2-239x-(13x+8)+15=0
We get rid of parentheses
156x^2-239x-13x-8+15=0
We add all the numbers together, and all the variables
156x^2-252x+7=0
a = 156; b = -252; c = +7;
Δ = b2-4ac
Δ = -2522-4·156·7
Δ = 59136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{59136}=\sqrt{256*231}=\sqrt{256}*\sqrt{231}=16\sqrt{231}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-16\sqrt{231}}{2*156}=\frac{252-16\sqrt{231}}{312} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+16\sqrt{231}}{2*156}=\frac{252+16\sqrt{231}}{312} $
| 3*m-2=m*0.5+2 | | t+0.8=t*0.8 | | 10y+6y=+32 | | 4(2n+4)=7(4n+2)+8 | | 1/3t^2+8/3t+5=0 | | 3×x+1/2=2 | | 3/3×x=5/4 | | 4-r=3r+12 | | 3/2×x=11/4 | | y=128(0.5)^5 | | 229=2,6x+65 | | 130-x=100 | | (2x+22)^(3/2)=512 | | 46=3x=2x-1 | | 5k-3=7-k | | 210/x-210/(x+7)=1 | | 6(y-8)=8y-30 | | 210/x-210/x+7=1 | | z-0.052=190 | | 9x+12=5x+24 | | 123.4=2/5y | | v+0.2v-6=102 | | 1-2x=4-4x | | 2c÷2=16 | | x-0.01x-16=83 | | (x+5)(x2-9)=0 | | 8x-2x=4 | | 53=8+10/c | | 1/2(10-2p)=3(2p-3) | | x+0.008x=14.04 | | 55=19x-2 | | -2x+14=26 |