12x(x+4)=4(1+3x)

Simple and best practice solution for 12x(x+4)=4(1+3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x(x+4)=4(1+3x) equation:


Simplifying
12x(x + 4) = 4(1 + 3x)

Reorder the terms:
12x(4 + x) = 4(1 + 3x)
(4 * 12x + x * 12x) = 4(1 + 3x)
(48x + 12x2) = 4(1 + 3x)
48x + 12x2 = (1 * 4 + 3x * 4)
48x + 12x2 = (4 + 12x)

Solving
48x + 12x2 = 4 + 12x

Solving for variable 'x'.

Reorder the terms:
-4 + 48x + -12x + 12x2 = 4 + 12x + -4 + -12x

Combine like terms: 48x + -12x = 36x
-4 + 36x + 12x2 = 4 + 12x + -4 + -12x

Reorder the terms:
-4 + 36x + 12x2 = 4 + -4 + 12x + -12x

Combine like terms: 4 + -4 = 0
-4 + 36x + 12x2 = 0 + 12x + -12x
-4 + 36x + 12x2 = 12x + -12x

Combine like terms: 12x + -12x = 0
-4 + 36x + 12x2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(-1 + 9x + 3x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(-1 + 9x + 3x2)' equal to zero and attempt to solve: Simplifying -1 + 9x + 3x2 = 0 Solving -1 + 9x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -0.3333333333 + 3x + x2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + 3x + 0.3333333333 + x2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + 3x + x2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + 3x + x2 = 0 + 0.3333333333 3x + x2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 3x + x2 = 0.3333333333 The x term is 3x. Take half its coefficient (1.5). Square it (2.25) and add it to both sides. Add '2.25' to each side of the equation. 3x + 2.25 + x2 = 0.3333333333 + 2.25 Reorder the terms: 2.25 + 3x + x2 = 0.3333333333 + 2.25 Combine like terms: 0.3333333333 + 2.25 = 2.5833333333 2.25 + 3x + x2 = 2.5833333333 Factor a perfect square on the left side: (x + 1.5)(x + 1.5) = 2.5833333333 Calculate the square root of the right side: 1.607275127 Break this problem into two subproblems by setting (x + 1.5) equal to 1.607275127 and -1.607275127.

Subproblem 1

x + 1.5 = 1.607275127 Simplifying x + 1.5 = 1.607275127 Reorder the terms: 1.5 + x = 1.607275127 Solving 1.5 + x = 1.607275127 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = 1.607275127 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = 1.607275127 + -1.5 x = 1.607275127 + -1.5 Combine like terms: 1.607275127 + -1.5 = 0.107275127 x = 0.107275127 Simplifying x = 0.107275127

Subproblem 2

x + 1.5 = -1.607275127 Simplifying x + 1.5 = -1.607275127 Reorder the terms: 1.5 + x = -1.607275127 Solving 1.5 + x = -1.607275127 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = -1.607275127 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = -1.607275127 + -1.5 x = -1.607275127 + -1.5 Combine like terms: -1.607275127 + -1.5 = -3.107275127 x = -3.107275127 Simplifying x = -3.107275127

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.107275127, -3.107275127}

Solution

x = {0.107275127, -3.107275127}

See similar equations:

| 100-(66+3?9)+8?3=3?i+1 | | 2x^2-x+1= | | 4(b-2)-10=2b | | x^3-6x^2+20x-9=0 | | (x+7)2+(y-4)2=64 | | |6x-1|+4=1 | | lxh=a | | y=2lnx-(e^3x) | | 180-90-(36+x)=x | | 180-90-36+x=x | | 8-3=7-6-x | | x-15=7-3x | | 70+10= | | 6x+4(x-y)= | | 4u^2-15u+4= | | x-8+5=10 | | 7z^2-63z=0 | | x=9-y-4x | | 9x^2+mx+16=0 | | 8x-2(2-x)=10 | | x^2+1.05x-1.096=0 | | -90+8x=63-x | | x*32=704 | | 6+5=9 | | 6x-3=4x+29 | | -0.15x+9.5=0 | | (6x)=(4x) | | 4+2=4-x+1 | | ax+bx=cforx | | 2x^2-6xy+3xy-9y^2= | | 0=3x^2-16x+7 | | 6+s=9 |

Equations solver categories