12x+21=3(4x+6)5x-20=3(x-4)

Simple and best practice solution for 12x+21=3(4x+6)5x-20=3(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x+21=3(4x+6)5x-20=3(x-4) equation:



12x+21=3(4x+6)5x-20=3(x-4)
We move all terms to the left:
12x+21-(3(4x+6)5x-20)=0
We calculate terms in parentheses: -(3(4x+6)5x-20), so:
3(4x+6)5x-20
We multiply parentheses
60x^2+90x-20
Back to the equation:
-(60x^2+90x-20)
We get rid of parentheses
-60x^2+12x-90x+20+21=0
We add all the numbers together, and all the variables
-60x^2-78x+41=0
a = -60; b = -78; c = +41;
Δ = b2-4ac
Δ = -782-4·(-60)·41
Δ = 15924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15924}=\sqrt{4*3981}=\sqrt{4}*\sqrt{3981}=2\sqrt{3981}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-2\sqrt{3981}}{2*-60}=\frac{78-2\sqrt{3981}}{-120} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+2\sqrt{3981}}{2*-60}=\frac{78+2\sqrt{3981}}{-120} $

See similar equations:

| 10+x/2=0 | | 9v+4=-131 | | 5=1b/3 | | -4•+2y=16 | | x+6+2x+6=60 | | 5-3(t-1)=t+4(1-t)+4 | | 2-3(5-3x)=5-9x | | 17b-5=-3+8(2b+1)+b | | 4-(×+3)÷6=2+(9-2x)÷3 | | 360/3=o | | 4*31-1=k | | 2*31-8=k | | 4*31+13=o | | 6*31=j | | 6x+4x+13+x+9+2x-8+4x-1=540 | | 92=-4(3x-6-) | | 92=4(3x-6) | | 3x-36=2x-5x | | c^2-3=1 | | 360=5x+71+85+44 | | 4z-5z=4 | | 360/7=b | | 4x-9=-2x-21 | | 4x+2=5- | | 9+5a=54/a= | | 1440=x+2x+143+152+116+125+140+130 | | 3x-20-4x=22 | | 3x+42)+(x+34)=180 | | 360/15=k | | 360/5=h | | x-1+x+10+x+18+3x+2x+x=360 | | 2x+1/x+4=1/4 |

Equations solver categories