12x-(42-3x)/(x+1)=42

Simple and best practice solution for 12x-(42-3x)/(x+1)=42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x-(42-3x)/(x+1)=42 equation:



12x-(42-3x)/(x+1)=42
We move all terms to the left:
12x-(42-3x)/(x+1)-(42)=0
Domain of the equation: (x+1)!=0
We move all terms containing x to the left, all other terms to the right
x!=-1
x∈R
We add all the numbers together, and all the variables
12x-(-3x+42)/(x+1)-42=0
We multiply all the terms by the denominator
12x*(x+1)-(-3x+42)-42*(x+1)=0
We multiply parentheses
12x^2+12x-(-3x+42)-42x-42=0
We get rid of parentheses
12x^2+12x+3x-42x-42-42=0
We add all the numbers together, and all the variables
12x^2-27x-84=0
a = 12; b = -27; c = -84;
Δ = b2-4ac
Δ = -272-4·12·(-84)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4761}=69$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-69}{2*12}=\frac{-42}{24} =-1+3/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+69}{2*12}=\frac{96}{24} =4 $

See similar equations:

| 2x-18=-38 | | T=6+11x | | 9a-14=58 | | 12x-42-3x/(x+1)=42 | | -5(3-4k)=14k+45 | | 3(2-x)5=4(x+2) | | 4x-2(x-6)=2(x+1)=8 | | -1/5x-40=-x+8 | | (X-2)*7=5x-4 | | 14-5y=1 | | 10+(h/3)=1 | | 3.6=1.6g | | 2(k-2)=k+5 | | -4x^2-7=-11 | | (x-4)^2-21=0 | | –5(x+1)=–4–7x | | F(4)-5=4n^2+3n | | 5(x+8)+8=5x+5 | | x=1/10-1/15 | | -7x-10=87 | | 5x+5-3x=14-2x+7=8x | | 5x-2=(x+1)×3 | | 5/2x-3=x+11 | | r(r+14)=61.25 | | 14-9x+2x=20 | | 3j+4(2+j)=10j+11 | | (2x+1)/3=3x-16 | | (x=4)^2-21=0 | | 9x^2=7-6x | | 2x/7=11/4 | | 3(2l+3)=6 | | 1/3k-3=5 |

Equations solver categories