If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x-3+4x^2=0
a = 4; b = 12; c = -3;
Δ = b2-4ac
Δ = 122-4·4·(-3)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{3}}{2*4}=\frac{-12-8\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{3}}{2*4}=\frac{-12+8\sqrt{3}}{8} $
| -4-12y=24 | | 6x-10=52 | | 0.96-16.5p=-11.08-17.9p | | 26x+27=540 | | 26x+27=550 | | 15z-16=13z | | 96=b(2b-8) | | -5=4x2-5 | | 42=3g=101 | | 2/3(12-9)+10=x+-6+10 | | 4-9x=103 | | -34+6r=3(9r-4) | | -15-4p=-11p+5p+19 | | 5x/10-4/5=2x/5 | | 19+(h*5.50)=13+(h*6.75) | | 8q-14=q | | -x+47=25 | | 3(n/5-1)=23 | | 12.81+16.4d-16.61=16.84+18d | | (x+10)/2=x-10 | | 20=-4k+2k | | 3x2-15x=4(x+2x2)-13 | | (4n-3)(2n+2)=0 | | 12.81-11.4k=-15.03-17.2k | | y/4+6=-11 | | 2(n-3)=92 | | 130+31.67a=500 | | X(3x+4)=-1 | | 2(n+3)=92 | | X+96°+5x°=180° | | 5.5+7a=19.5 | | -7x2-8x+9=0 |