If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x-4x(6x-9)=9x(4-2x)+3x
We move all terms to the left:
12x-4x(6x-9)-(9x(4-2x)+3x)=0
We add all the numbers together, and all the variables
12x-4x(6x-9)-(9x(-2x+4)+3x)=0
We multiply parentheses
-24x^2+12x+36x-(9x(-2x+4)+3x)=0
We calculate terms in parentheses: -(9x(-2x+4)+3x), so:We add all the numbers together, and all the variables
9x(-2x+4)+3x
We add all the numbers together, and all the variables
3x+9x(-2x+4)
We multiply parentheses
-18x^2+3x+36x
We add all the numbers together, and all the variables
-18x^2+39x
Back to the equation:
-(-18x^2+39x)
-24x^2-(-18x^2+39x)+48x=0
We get rid of parentheses
-24x^2+18x^2-39x+48x=0
We add all the numbers together, and all the variables
-6x^2+9x=0
a = -6; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-6)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-6}=\frac{-18}{-12} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-6}=\frac{0}{-12} =0 $
| -1+r/9=-2 | | -2(n-3)=14 | | 7/8+3/4=1/2n+3/2 | | 11y=37.4y=3.4 | | -5(v-4)=15 | | k+2+10k=8+10k | | 2(3x-6)=36 | | 11y=37.5 | | -2(x-2)=-10 | | -6+6y=9y | | -2(-2+n)=-16 | | 49x^2+14x-63=0 | | -6t-10-7t=-10t+5 | | (7x-5)(7x+5)=-25 | | 45(5)-69=y | | f-(-4)f=8 | | 4(-2+n)=-16 | | 10x-16=180 | | 16x^2+8x-5=0 | | 5+2x10=0 | | x-(0.01x)=0.11 | | 95=-4x+33x | | -16.4x+51=51 | | 0.7x+3.1=0.6x+1.8 | | 1+a/4=2 | | 5(x+14)+18=93 | | -1.3c=10.4 | | 125=25^-x-4 | | 8x+9=2x-21 | | 7x=171/2 | | 36(9)-176.8=y | | 0=9x2−180 |