12x-9=(2x+1)(4x-3)

Simple and best practice solution for 12x-9=(2x+1)(4x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x-9=(2x+1)(4x-3) equation:



12x-9=(2x+1)(4x-3)
We move all terms to the left:
12x-9-((2x+1)(4x-3))=0
We multiply parentheses ..
-((+8x^2-6x+4x-3))+12x-9=0
We calculate terms in parentheses: -((+8x^2-6x+4x-3)), so:
(+8x^2-6x+4x-3)
We get rid of parentheses
8x^2-6x+4x-3
We add all the numbers together, and all the variables
8x^2-2x-3
Back to the equation:
-(8x^2-2x-3)
We add all the numbers together, and all the variables
12x-(8x^2-2x-3)-9=0
We get rid of parentheses
-8x^2+12x+2x+3-9=0
We add all the numbers together, and all the variables
-8x^2+14x-6=0
a = -8; b = 14; c = -6;
Δ = b2-4ac
Δ = 142-4·(-8)·(-6)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2}{2*-8}=\frac{-16}{-16} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2}{2*-8}=\frac{-12}{-16} =3/4 $

See similar equations:

| -8(x+5)+x=-26 | | 17+6(x-19)=5x-24 | | (x*2+1)*5-5=60 | | 11b+8(4b+7)=4(-2b+8)-15 | | (2/3)(x)=27 | | j+13/7=3 | | y/3=13/4 | | -8(2m+5)-2=6 | | q+11/3=7 | | 10+12n=58 | | -4x+12=-2(3x-6) | | -6.5+x=-3 | | y/3=-13/4 | | -13a+20a=14 | | q/6+13=19 | | 3z+-10=-4 | | 11=x/17 | | -4.5v-7.78=9.62+4.2v | | 105=8.75n | | –4.5v−7.78=9.62+4.2v | | 10+4t=3t+1 | | -7-2v=-3(v-4 | | 6-j=2j-6+9j | | e=5e | | 3z+–10=–4 | | 3(9x+1)=27x-9 | | 3x-8+x+14=90 | | 20=5.00+1.50r | | -5u-8u+8=8-4u | | (x+60)+x=820 | | 18x-4=17x+2 | | X+4+2x+3x-9=85 |

Equations solver categories