12x/100+(x-15000)x1/100=7650

Simple and best practice solution for 12x/100+(x-15000)x1/100=7650 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x/100+(x-15000)x1/100=7650 equation:



12x/100+(x-15000)x1/100=7650
We move all terms to the left:
12x/100+(x-15000)x1/100-(7650)=0
We multiply all the terms by the denominator
12x+(x-15000)x1-7650*100=0
We add all the numbers together, and all the variables
12x+(x-15000)x1-765000=0
We multiply parentheses
x^2+12x-15000x-765000=0
We add all the numbers together, and all the variables
x^2-14988x-765000=0
a = 1; b = -14988; c = -765000;
Δ = b2-4ac
Δ = -149882-4·1·(-765000)
Δ = 227700144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{227700144}=\sqrt{144*1581251}=\sqrt{144}*\sqrt{1581251}=12\sqrt{1581251}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14988)-12\sqrt{1581251}}{2*1}=\frac{14988-12\sqrt{1581251}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14988)+12\sqrt{1581251}}{2*1}=\frac{14988+12\sqrt{1581251}}{2} $

See similar equations:

| 3`4/5+g=5`1/6 | | 3x-9=5`x-`3 | | 6m–18=12+4m | | k+1/8=11,1/4 | | (110)=15x+45.5 | | B(x)=110 | | H/10=6h= | | (23)=15x+45.5 | | 4.7=x-3.6 | | 10x+5(2x-1)=55 | | -3(2k-3)=-15 | | 14+3x-4=28 | | 14m-9=79 | | 9m-5m=40 | | 7+y/6=19 | | 15+7x=4x-15 | | 1+n/2=25 | | 8x-22=4x+26 | | 0.75x+0.50x=15+13 | | -55-2.50d=0 | | 8x+55=-11 | | 8.3-3p=2.6 | | c2−8c+64=(c−8)2 | | x12/x4=x8 | | 5x+10x-7=0 | | -n+5n=4n | | 7x-9=9x-19 | | 2x-33=x9+4 | | 1+3a=21 | | 90=2x+15+x | | 7p^2+63p=126=0 | | 180=132+x+x |

Equations solver categories