If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+16x+1=0
a = 12; b = 16; c = +1;
Δ = b2-4ac
Δ = 162-4·12·1
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{13}}{2*12}=\frac{-16-4\sqrt{13}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{13}}{2*12}=\frac{-16+4\sqrt{13}}{24} $
| x*5.4=11.5 | | 6x+1=2x-7+4x | | 3x-4=5+6x | | (12x+25)/13=13 | | -6x+20=10x-16 | | 48=2x+6= | | x/48=0 | | 2g-21=1 | | (10x-7)(4x+6)=5x | | 3x+12-4x=23 | | 10x-69=12x-25 | | x~5.4=11.5 | | 4(x-3)+16=6x-8 | | 3x+27+27=180 | | -1.6x=-4.8 | | 2-3r=-1-6r | | x-2=9x+7 | | g/6+13=29 | | x=29=46 | | 20=2x-7+4x+3 | | 7x+5=-5+5x=16 | | -2(3x+2)+4x=12 | | f=-f-8 | | 13(2n−5)=7 | | y+6.5=-1.2 | | 3(x+4)=3x-20 | | 2(x+1)+4=11 | | 2x+8-13=3x+4 | | x-2=9x+1 | | 2x+3+x-1=x+4 | | 27-6=8.25x | | 3(m-10)+1=2(m-8) |