If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+16x=0
a = 12; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·12·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*12}=\frac{-32}{24} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*12}=\frac{0}{24} =0 $
| 6v^2+8v=12 | | 1/2+x=5/4;{1/2,3/4,1,5/4} | | 2x+5=-6x8 | | 4.4=1.9-0.7y | | 2a÷9=12 | | 1/2(12-6r=5r-6 | | 6(12+x)=144 | | (z-6)^2=25 | | 3x+(4x-15=90 | | 6+8(4k+4)=262 | | 2x+22=-7(x-6) | | -2(1=8x)=1/4(8-64x) | | 9x+1/2=36 | | 1/2(4k+2)-5k=10 | | -6(1-6r)=-2(r+3 | | 5x+19=x3 | | 2(w+9)=5w+42 | | -8+2u=-18 | | 12x+7-4x=10x-15+x | | x/4+14=24 | | |y-5|+9=6 | | 5(-2w+4)-12=22 | | 8x+180=6x+160 | | 48÷u=6 | | 5p+11=8p | | -13=-7+2w | | 15=2w-13 | | 8n+3-3n+12=35 | | n/12=300n= | | 1/8(3x-2)=1/4(3x-7) | | 2(v-1)=4v=3(v-1)+7 | | (y-5)+9=6 |