If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+35x-52=0
a = 12; b = 35; c = -52;
Δ = b2-4ac
Δ = 352-4·12·(-52)
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-61}{2*12}=\frac{-96}{24} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+61}{2*12}=\frac{26}{24} =1+1/12 $
| 2(x+-6)=x-5/2 | | 4.6x-12.12=4.9 | | 9x^2-73x+104=0 | | 2(x+4)-2=2(x-3) | | 7/x+7=42 | | 4(t-3)+8=4(2t-4) | | F(x)=X^3-13x^2+72x-160 | | 25x2+4410x=0 | | (4x+120)=3/5 | | x(2-5x)(7+x)=0 | | 9=3(g–5) | | 8x-51+6x-25=180 | | 2x3+30x=0 | | 14=(-7/2)x | | x*0.8=0.04 | | -2(5t-4)+5t=8t-6 | | 9-3600/x^2=0 | | (2/7)x+(3/7)=-(3/7) | | x+(x+90)=250 | | 14=n(n-3)/2 | | 2.33333333333c=2.1 | | 3x+31/4=9 | | x(4x-2)+2(x+10)=29 | | 2x+53/7=9 | | 20-2400x^2=0- | | 20-2400/x^2=0 | | -4(4x-6)=-8 | | 6y-15=89 | | 20-2400x^-2=0 | | 3+-2y*2+4y=6 | | 4x+120=3/5 | | 2r-10r=56 |