If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+6x-36=0
a = 12; b = 6; c = -36;
Δ = b2-4ac
Δ = 62-4·12·(-36)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-42}{2*12}=\frac{-48}{24} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+42}{2*12}=\frac{36}{24} =1+1/2 $
| Y2-2y+1=0 | | 260=16+4d/13 | | 7x/3+10=-11 | | 7(2c-1)=3(c+1) | | (5n)^=5n^ | | x+7x=60+4 | | 21x/8-1/4-2=0 | | (5n)^=2n-1 | | 2x^2-24x+19=0 | | x^2-x/3-3=0 | | 3n-2n^2=4 | | 5(2x-7)-7x=7x+1 | | 2(2w-7)=18w= | | 7^x+2=42+7^x+1 | | 6x+13=8x-3 | | 8x+40=15x-30 | | 2-9x=-34 | | -5/4u=20 | | 1.18x=100 | | 8x+30=-9(x-9) | | 6(x+2)-8x=10 | | -5/3x=-35/9 | | x+(5-8x)=1 | | 13x+5x-2x=-80 | | 3x-15=5+5x | | 7(4x-5)=9(3x-1)+6 | | 2x+6+6x-x+4=6x-7 | | 7^2x=7^3x-^9 | | 64=2^n-^9 | | 256=90-w | | (2x+5)^2=6 | | 214=-v+57 |