If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-4x-3=0
a = 12; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·12·(-3)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{10}}{2*12}=\frac{4-4\sqrt{10}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{10}}{2*12}=\frac{4+4\sqrt{10}}{24} $
| 19x2-16x-19=0 | | 17/89=19/x | | (39-x)/9=4 | | x+3/2x-7-2x-1/x-3=0 | | 4y+3=367 | | x+1/x+x-5/3x=2x+9/4x | | 1/2k+4/k=k/k+2 | | 8-x=5x-40 | | 8-5x=-40-x | | x(x-10)=10 | | 3d*4=9 | | 31-6h=43 | | .x-58=42 | | 45+10r=68 | | 2.4(x-3)=0.6(3-2x( | | 1/5*(x-8)+4+x/4+x-1/7=7-23-x/5 | | 10a=408+7a | | 5e+4=45 | | 49^x-7^(x-1)-8=0 | | 7t^2-t-56=0 | | 3x=19+4x | | 12x-45=77 | | 68=9c/5 | | 7t+7=5(t-5) | | 5x+1/2(x-2)=-45 | | 3x1=c | | 6f+21=15 | | 3r+12=-2 | | 5(3a+4)=35 | | 86-2x=6 | | 6000=150x | | 3^(2^p)-12(3^p)+27=0 |