If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-9=0
a = 12; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·12·(-9)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*12}=\frac{0-12\sqrt{3}}{24} =-\frac{12\sqrt{3}}{24} =-\frac{\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*12}=\frac{0+12\sqrt{3}}{24} =\frac{12\sqrt{3}}{24} =\frac{\sqrt{3}}{2} $
| 51+4x+11=90 | | -9c-8c=16 | | 5x-1+8x-14=180 | | v=45+12+.2v | | 4x+12+30=90 | | -7x+3=-x+9 | | 6x-2+8+6x=90 | | 6(1-5v)+7v=-178 | | (2x÷5)=105 | | 5x-2+8+6x=90 | | 5n+3n-2n=32 | | 2x^2+24x+79=0 | | 3x+3(x-2)=3(x+6) | | x+4-9=20 | | 7x-2=-6x-15 | | 3x=3(x-2)=3(x+6) | | 5-7x=7x-93 | | 3-6x=15-3x | | 5(x+4)+12=2(x-3-1) | | 7x+4=6x+14 | | -3x+10=-2x+9 | | 5b=3b+6 | | -2(x-4)^2+5=4 | | 3/4+-9p=-3/5 | | -2+6=-m | | 32-5q=-67 | | 11-4a=3a-27 | | -3(1-5b)=102 | | 5y-3y+2=-2 | | 15k^2+49=56k | | 3*3x-4=15+45 | | 4/8x+4=8 |