12y+48-4y=8y(y-6)

Simple and best practice solution for 12y+48-4y=8y(y-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12y+48-4y=8y(y-6) equation:



12y+48-4y=8y(y-6)
We move all terms to the left:
12y+48-4y-(8y(y-6))=0
We add all the numbers together, and all the variables
8y-(8y(y-6))+48=0
We calculate terms in parentheses: -(8y(y-6)), so:
8y(y-6)
We multiply parentheses
8y^2-48y
Back to the equation:
-(8y^2-48y)
We get rid of parentheses
-8y^2+8y+48y+48=0
We add all the numbers together, and all the variables
-8y^2+56y+48=0
a = -8; b = 56; c = +48;
Δ = b2-4ac
Δ = 562-4·(-8)·48
Δ = 4672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4672}=\sqrt{64*73}=\sqrt{64}*\sqrt{73}=8\sqrt{73}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-8\sqrt{73}}{2*-8}=\frac{-56-8\sqrt{73}}{-16} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+8\sqrt{73}}{2*-8}=\frac{-56+8\sqrt{73}}{-16} $

See similar equations:

| 6x-163=89-3x | | s+2*1/2s+10=45 | | 33,775+25x=35,700-150x | | -2x+7(1-7x)=160 | | 10-7x=-8-9x | | 4.3=-10+x | | -6(4x-7)+5(5x-4)-9=9-7 | | -165-7x=77+4x | | -4*x=-8^2 | | 8x+45=205 | | 6r+7(2r-2)=-154 | | X^2=5x^2-140 | | 6r+7(2r-)=-154 | | -15+6a=-5(a-8) | | x+27=1/3-8 | | 20+.50x=30+.25x | | (-3/x)=(6/x-1) | | -16=r=-2 | | 2(x+1)-(x-1)=11 | | -(-2-5x)+9-2)=18 | | 45x+4=61+2 | | 6x-8°=2x+2°+90 | | y=7.50-6 | | -51-2x=-6x+49 | | 6x+8=5x=7 | | 16x16=x | | 2(8x-4)=4(3x-4 | | 5(3x+12)+9=-36 | | 33-1x=-10x | | 100x=40+80x | | 1t+18=6 | | 7-5x=x-4(2-x) |

Equations solver categories