13+16/8x+7.50x=0

Simple and best practice solution for 13+16/8x+7.50x=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13+16/8x+7.50x=0 equation:



13+16/8x+7.50x=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
7.50x+16/8x+13=0
We multiply all the terms by the denominator
(7.50x)*8x+13*8x+16=0
We add all the numbers together, and all the variables
(+7.50x)*8x+13*8x+16=0
We multiply parentheses
56x^2+13*8x+16=0
Wy multiply elements
56x^2+104x+16=0
a = 56; b = 104; c = +16;
Δ = b2-4ac
Δ = 1042-4·56·16
Δ = 7232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7232}=\sqrt{64*113}=\sqrt{64}*\sqrt{113}=8\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(104)-8\sqrt{113}}{2*56}=\frac{-104-8\sqrt{113}}{112} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(104)+8\sqrt{113}}{2*56}=\frac{-104+8\sqrt{113}}{112} $

See similar equations:

| (5x)-9=(7x)+6-(2x) | | 12+b=41 | | 5x-9=7x+6-(2x) | | 12=-2(k+1) | | 6=6(r+3) | | 2x+156-5x=-36 | | -5t+10+2t=-2 | | 3x/4=4x-3 | | -4=(1/2x)-5=2 | | 5+3n=-5+n-1+5 | | 2(2k-1)=-3.6(k-1) | | 3x-x+2/4-3x-2/2+x-1/3=1 | | 1/2-3=3/2x+4 | | -6x-5=-17 | | y=-2(2)+8 | | -10x-41=-15x+69 | | 9+17=3f+5 | | 8+r/6=9 | | 2x+4(3x+3)=96 | | (13+16)/(x-15.5)=0 | | 23=x14 | | 6p+4(p+6)=3p+24 | | 7x-12x+9=2x-12 | | 3n+3/8=n/5 | | -15n+19=-14n-6 | | -109=-3x-7x+1 | | 9(-5+n)=135 | | 1a+3a-2-7a=0 | | -15=-6b-9 | | 13+16/x-15.5=0 | | 3x+5-x=5 | | 1=5+n/14 |

Equations solver categories