13-(2c+2)=2(c2+2)+3c

Simple and best practice solution for 13-(2c+2)=2(c2+2)+3c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13-(2c+2)=2(c2+2)+3c equation:



13-(2c+2)=2(c2+2)+3c
We move all terms to the left:
13-(2c+2)-(2(c2+2)+3c)=0
We add all the numbers together, and all the variables
-(2(+c^2+2)+3c)-(2c+2)+13=0
We get rid of parentheses
-(2(+c^2+2)+3c)-2c-2+13=0
We calculate terms in parentheses: -(2(+c^2+2)+3c), so:
2(+c^2+2)+3c
We multiply parentheses
2c^2+3c+4
Back to the equation:
-(2c^2+3c+4)
We add all the numbers together, and all the variables
-2c-(2c^2+3c+4)+11=0
We get rid of parentheses
-2c^2-2c-3c-4+11=0
We add all the numbers together, and all the variables
-2c^2-5c+7=0
a = -2; b = -5; c = +7;
Δ = b2-4ac
Δ = -52-4·(-2)·7
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-9}{2*-2}=\frac{-4}{-4} =1 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+9}{2*-2}=\frac{14}{-4} =-3+1/2 $

See similar equations:

| 51+3x+9=90 | | (2x+10)/5=10 | | 5/6=-1/6q | | 2={8p+10} | | a+21/7=a-3/8 | | (n-3)*(n-4)=20 | | (2x+0)/5=10 | | 13-(2c+2)=2(c2+2+3c | | 40=8-2x | | 4/3=-1/3q | | x+6+8=2x–x+14 | | 12.5=y-12.5 | | 3x+11+x-10=17 | | 2+x=x-4 | | 5x-15=9x-23 | | (-2x+2)/4=4 | | 18=4y-34 | | 36-23x=-36 | | 4a/9=16/3 | | X+5+x+5+x=40 | | -2/3(5/6x-7/10)=17/20 | | 22+x=65 | | 2(x+3x+4)=72 | | 23=46−–y | | 6x+2+62=180 | | 3m-2=49 | | 1000(8x+10)=60(310+100x) | | -3(12–5x)=24 | | 49t=−2 | | 4x+1+2x+23=180 | | (10x+10)/6=-5 | | 12=4x-44 |

Equations solver categories