If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13/5n-11/10n+11/3=7/6
We move all terms to the left:
13/5n-11/10n+11/3-(7/6)=0
Domain of the equation: 5n!=0
n!=0/5
n!=0
n∈R
Domain of the equation: 10n!=0We add all the numbers together, and all the variables
n!=0/10
n!=0
n∈R
13/5n-11/10n+11/3-(+7/6)=0
We get rid of parentheses
13/5n-11/10n+11/3-7/6=0
We calculate fractions
(-1050n^2)/2700n^2+3300n^2/2700n^2+7020n/2700n^2+(-2970n)/2700n^2=0
We multiply all the terms by the denominator
(-1050n^2)+3300n^2+7020n+(-2970n)=0
We add all the numbers together, and all the variables
3300n^2+(-1050n^2)+7020n+(-2970n)=0
We get rid of parentheses
3300n^2-1050n^2+7020n-2970n=0
We add all the numbers together, and all the variables
2250n^2+4050n=0
a = 2250; b = 4050; c = 0;
Δ = b2-4ac
Δ = 40502-4·2250·0
Δ = 16402500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16402500}=4050$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4050)-4050}{2*2250}=\frac{-8100}{4500} =-1+4/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4050)+4050}{2*2250}=\frac{0}{4500} =0 $
| x/4+15=31 | | -7.5=x/4.2 | | 1130.50+68.50x=2158 | | 5x+4-3=5x-4x+2 | | -11=4a+5a+25 | | 5x4=10 | | -1(t-8)=7.1 | | d÷3.2+65=90 | | 99.96=6.8d | | 5mm=-3 | | 5.30=6z | | -3.45+0.5p=-1.3 | | -5(6-2p)=10 | | n+14=-17 | | 0.142857k-6=0.428571k+4 | | -9h-21=519 | | 1.20(n+2.5)=4.50 | | 12x=90+6x | | N(t)=300⋅9t | | 18=0.32x | | 18x^2-3x^2+63x=0 | | 12+x=33.75 | | 24x+12=7.5x+45 | | 123/4+x=33.75 | | -150=n/4 | | 15=8z+7 | | 40+80=x | | 3x-12+2x=76 | | 1/6Xn=8 | | n/5-9=2 | | -50=-40+x | | 2x+14+36+48=180 |