If it's not what You are looking for type in the equation solver your own equation and let us solve it.
136+12x=63x^2
We move all terms to the left:
136+12x-(63x^2)=0
determiningTheFunctionDomain -63x^2+12x+136=0
a = -63; b = 12; c = +136;
Δ = b2-4ac
Δ = 122-4·(-63)·136
Δ = 34416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34416}=\sqrt{144*239}=\sqrt{144}*\sqrt{239}=12\sqrt{239}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{239}}{2*-63}=\frac{-12-12\sqrt{239}}{-126} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{239}}{2*-63}=\frac{-12+12\sqrt{239}}{-126} $
| -16x^2+10x-6=0 | | (x+3)(2x+4)/2=56 | | (w+8)*(3w+8)=488 | | 21x7=x52x10 | | x*40=36 | | 11x-6=60° | | 9x-32=5x+4 | | 11x+14=11x+14 | | (2x-7)(x)=15 | | 2=11+3(m+3)=23 | | 12x-10=2x+6 | | c=3.14*64 | | -2(b+8)-13=-53 | | 0=4w-10w^2 | | 14x^2-6x=2x | | 3x-25=10x-5+x | | 180-128=y | | 4+2.2v=-3.7 | | 4x+20=3x-6-2x-4 | | n+3=54/9= | | (3x-7)/(2x+6)=0 | | 8x-119=-2+161 | | 2t^2+1t-8=0 | | 8x-9=-2x+161 | | 34+z=69 | | 165=3n+6 | | 12+9b=57 | | 4n+28=56 | | 5x-4=7-2x | | 5x-4=7-2 | | 70/15=x | | 7-4x=-7x-14 |