136=n(n-1)

Simple and best practice solution for 136=n(n-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 136=n(n-1) equation:



136=n(n-1)
We move all terms to the left:
136-(n(n-1))=0
We calculate terms in parentheses: -(n(n-1)), so:
n(n-1)
We multiply parentheses
n^2-1n
Back to the equation:
-(n^2-1n)
We get rid of parentheses
-n^2+1n+136=0
We add all the numbers together, and all the variables
-1n^2+n+136=0
a = -1; b = 1; c = +136;
Δ = b2-4ac
Δ = 12-4·(-1)·136
Δ = 545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{545}}{2*-1}=\frac{-1-\sqrt{545}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{545}}{2*-1}=\frac{-1+\sqrt{545}}{-2} $

See similar equations:

| 48=6(r+6) | | 4(2x-8)+24=5x-14+x | | 8-1/2*x=-15 | | 0.05x-0.08+x=097 | | 1.32=3g−6g= | | -8-2x+4x=7x-4x | | 84=-3(k-98) | | 21y=-3(7y+3)-4 | | 72=7v+2 | | -(b+47)=44 | | 4g-3;g=-4 | | 1+10d=–4+5d | | 21y=-3(7y+3-4 | | –6s=–5s−4 | | 10j=–8+6j | | 6/30=x55 | | -2.6b+4=0.9b=17 | | (5x+11)/(4)=-6 | | y=5^4−25^3. | | -2x(3x+1)+5(2x-3)=-5 | | k/7+19=24 | | 0.1+(t+3420)=t | | 6(2x+5)=24 | | 50=5(p+2) | | 2(x+4)=4(3x+5) | | 4g-3=-4 | | 2/3x+1/9=6x+1 | | x-x*x*0.3x=204 | | p/9+44=48 | | -38=-6*x+-2 | | 3|8x|+8=80 | | x-x^2*0.3x=204 |

Equations solver categories