13x-1=13/9x+27

Simple and best practice solution for 13x-1=13/9x+27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13x-1=13/9x+27 equation:



13x-1=13/9x+27
We move all terms to the left:
13x-1-(13/9x+27)=0
Domain of the equation: 9x+27)!=0
x∈R
We get rid of parentheses
13x-13/9x-27-1=0
We multiply all the terms by the denominator
13x*9x-27*9x-1*9x-13=0
Wy multiply elements
117x^2-243x-9x-13=0
We add all the numbers together, and all the variables
117x^2-252x-13=0
a = 117; b = -252; c = -13;
Δ = b2-4ac
Δ = -2522-4·117·(-13)
Δ = 69588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{69588}=\sqrt{36*1933}=\sqrt{36}*\sqrt{1933}=6\sqrt{1933}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-6\sqrt{1933}}{2*117}=\frac{252-6\sqrt{1933}}{234} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+6\sqrt{1933}}{2*117}=\frac{252+6\sqrt{1933}}{234} $

See similar equations:

| x2-4=140 | | 8+4(2x-7)=-2(8x+3)-38 | | -4(1.5x2.83333333333-0.5)=-15 | | 4/t=2/25 | | (20x-2)°=(13x+19)°=4x° | | 2x-7=13+2x | | .25+x=2.25 | | 60+2x+18+10x–10=180 | | 90+(2x=40)+(3x-10)=180 | | t/–24=14 | | -3x-11=x-6-4x | | 9(n-2)=-63 | | 24-7(5x-3)=-5(6x+3) | | 24=u/14 | | (c)=c-0.08c | | 8x-7x=x8 | | 1/2(10x+15)-3/2=2x+6+3x | | -11x=4x+30 | | −2(4x+2)=4x+20 | | 9(n-2)=63 | | 12x+75+9x=180 | | x^2+8x-187=0 | | m5-45=90 | | 4-(x-1)-2x-1=0 | | 4x2-64=8x-4 | | 9x-30=54-3x | | 3(4x-2)=-5(3x+7)+56 | | 15x+60=2 | | (5x+38)+5x+22=180 | | -10(x-9)-5=5(9-10x) | | 2(x+3)-4x=-2+2(4x-1) | | 6.25+0.75x=4.75+0.90x/x=10 |

Equations solver categories