If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x-52x^2=0
a = -52; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-52)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-52}=\frac{-26}{-104} =1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-52}=\frac{0}{-104} =0 $
| 16/x=2,4 | | 8r-7=-39 | | 10=3x/31 | | 45x+9x2=0 | | 3(2x-11)=2(5-x) | | (x+3)^2=3x+13 | | 5x2-120x=0 | | 15-|x-3|=-2 | | 4x+12=-12- | | (2x+18)(9+x)=0 | | 7x+26=x+5 | | 3,2x+16,2=6,7x+5,7 | | 7(x+4)-3(x+1)=x+7 | | a+a=38 | | -37=-6x+5 | | 4x(3x-8)=0 | | 10(2y+10)=120y | | 1+9x=89-x | | -40-(18+x)=20 | | 108-9x=20 | | 18/x=3,0 | | 36+2x=-18 | | 10=3x/12 | | 3(2x-10)=2(5-x) | | 3x=0,998 | | 4x2-6x=0 | | 97x=0,998 | | 3z2+4z=0 | | 7,6x+17,9=3,1x+7,1 | | x=18-13 | | x=18−13 | | 3x+2=6x−7 |