If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+13x-14=0
a = 13; b = 13; c = -14;
Δ = b2-4ac
Δ = 132-4·13·(-14)
Δ = 897
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{897}}{2*13}=\frac{-13-\sqrt{897}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{897}}{2*13}=\frac{-13+\sqrt{897}}{26} $
| 20x2+6x-15=0 | | 113.04=(3.14)r(r) | | 20x2-6x+15=0 | | 15x2+11x+8=0 | | 15x2-11x-8=0 | | 8x2-7x-18=0 | | 19x2-12x-8=0 | | 9x2-18x-3=0 | | x+74+x+8+x+67+x+27=360 | | x+47+93+x+58=360 | | 5(3x-2x)=7x+4 | | (4d^4-15d^2+5d+6)y=0 | | 7-5x=10x+2 | | 3y+12=32 | | 2x-4=10x+7 | | 5x+3(x+4)=36+4x | | 96/k=3k= | | 3x+(3-2)=10 | | 9x-3=123x= | | 15+bb=6 | | 18z=-18+20z | | 6-2(c-3=12 | | -17k-10=18-13k | | -3g=-5g+4 | | -3g=5g+4 | | 2x2-20+46=0 | | 2x^2-20+46=0 | | 1/6(3/2j-4)+j=2/3j | | -5+9g=8g | | 5k=8k-6 | | 25/a=-5 | | -54/a=-9 |