If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+7x-9=0
a = 13; b = 7; c = -9;
Δ = b2-4ac
Δ = 72-4·13·(-9)
Δ = 517
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{517}}{2*13}=\frac{-7-\sqrt{517}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{517}}{2*13}=\frac{-7+\sqrt{517}}{26} $
| 16x2+7x-2=0 | | 18x2-6x+9=0 | | 20x2-2x+1=0 | | 4x2-19x-11=0 | | 17x2-18x+12=0 | | x2+7x+17=0 | | 4x2+11x-5=0 | | 14x2-18x-14=0 | | 19x2+3x-9=0 | | 13x2+7x-19=0 | | 7x2+8x-14=0 | | (p+11)/7=4 | | 16x2-14x-9=0 | | 26-6y+5=23 | | 17x2-3x+3=0 | | 6x2-12x-8=0 | | 19x2+10x-4=0 | | 2x2+8x-13=0 | | 5=25/(1.08)^x | | 5y-1/3+7=15 | | 2p/5+8=10 | | q+(q-20)+3q=180 | | 4x2+11x-45=0 | | 14x2+20x-18=0 | | 10x2+17x-10=0 | | 6x2+11x-5=0 | | 6x2-15x-5=0 | | 19x2-19x-11=0 | | 9x2+4x-17=0 | | 17x2-15x-14=0 | | 4x2+2x-16=0 | | 17x2-5x-3=0 |