If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14(5x^2)=3x+124
We move all terms to the left:
14(5x^2)-(3x+124)=0
We get rid of parentheses
145x^2-3x-124=0
a = 145; b = -3; c = -124;
Δ = b2-4ac
Δ = -32-4·145·(-124)
Δ = 71929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{71929}}{2*145}=\frac{3-\sqrt{71929}}{290} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{71929}}{2*145}=\frac{3+\sqrt{71929}}{290} $
| 61+16=5x | | b–120=80 | | 5+16x=61 | | 5x-x^2=3x | | 9x+5(x+1)=33 | | ¾(b+8)=15 | | 15+2x=-x+3 | | 7(2x+4)= 42 | | 504-3x=5x | | 10(5x-4)+3(2x-1)=12x(2-3x) | | 9x/15=0 | | 7x=9x^2-4 | | 3g−13=5 | | -5x=18-2x | | 1/2x=63. | | d/8=56 | | (12x-20)(4x/3)=180 | | 0,11-0,05(x-2)=0,4(x-3)+0,06 | | 20-(-j)=-56 | | -(x-1)+5=2(x+3)=5 | | Y=2x=3(x2) | | (2x-3)/(2)=(3x+8)/(4) | | –14p=–112 | | -(x-1)+5=2(x+3)=1 | | 4+3a=-22 | | -2(x+6)+3=6(x+2)+8 | | (2x+1)+(x+42)=180 | | 6(3-x)+(-9)=-4+2(3x+1)-x | | d/12=13 | | −4x−12=32−3x | | Y=2x+3{x2} | | 1/3x-1=1/2x |