14-1/8w=0.75w-21

Simple and best practice solution for 14-1/8w=0.75w-21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14-1/8w=0.75w-21 equation:



14-1/8w=0.75w-21
We move all terms to the left:
14-1/8w-(0.75w-21)=0
Domain of the equation: 8w!=0
w!=0/8
w!=0
w∈R
We get rid of parentheses
-1/8w-0.75w+21+14=0
We multiply all the terms by the denominator
-(0.75w)*8w+21*8w+14*8w-1=0
We add all the numbers together, and all the variables
-(+0.75w)*8w+21*8w+14*8w-1=0
We multiply parentheses
-0w^2+21*8w+14*8w-1=0
Wy multiply elements
-0w^2+168w+112w-1=0
We add all the numbers together, and all the variables
-1w^2+280w-1=0
a = -1; b = 280; c = -1;
Δ = b2-4ac
Δ = 2802-4·(-1)·(-1)
Δ = 78396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{78396}=\sqrt{4*19599}=\sqrt{4}*\sqrt{19599}=2\sqrt{19599}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(280)-2\sqrt{19599}}{2*-1}=\frac{-280-2\sqrt{19599}}{-2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(280)+2\sqrt{19599}}{2*-1}=\frac{-280+2\sqrt{19599}}{-2} $

See similar equations:

| 2(x-6.00)=38.00 | | -2(x-4)=-2x+6 | | -6=6x+42 | | 2-7x-8-4x=16 | | -8-5n+2n+15=28 | | 5^x-2=33 | | 7v+21=-15v+5+8v | | q-5+2=7-q | | 5n-3=7n-8 | | 3=-16t^2+40t+4 | | 5(c-0.15)=2.5 | | -4x-2=0 | | 3h+4=27 | | 10=22+6x | | 7n^2+14n+7=0 | | 9-6x=-21 | | 28+5x=3 | | 300=16t^2=0 | | 26x+40=360 | | 5x-57=-7 | | -76•y-61=y-89 | | 7•3•y=44.1 | | 64+9=x | | 18=6p+24 | | 21-9f=20(f-6) | | 0=-80t+16t^2+3.5 | | 2x/2+6/2=4x/2+2 | | 5/12y=12 | | 1/3x+5=1/2(x-3) | | 8(x+7)=2x(4-17) | | x-0.15=850 | | (12n^2-8n)(3n+2)=0 |

Equations solver categories