If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14.49+21.05y(0.004523-y)=100-72.46y(1+y)
We move all terms to the left:
14.49+21.05y(0.004523-y)-(100-72.46y(1+y))=0
We add all the numbers together, and all the variables
21.05y(-1y+0.004523)-(100-72.46y(y+1))+14.49=0
We multiply parentheses
-21y^2+0.094983y-(100-72.46y(y+1))+14.49=0
We calculate terms in parentheses: -(100-72.46y(y+1)), so:We get rid of parentheses
100-72.46y(y+1)
determiningTheFunctionDomain -72.46y(y+1)+100
We multiply parentheses
-72y^2-72y+100
Back to the equation:
-(-72y^2-72y+100)
-21y^2+72y^2+72y+0.094983y-100+14.49=0
We add all the numbers together, and all the variables
51y^2+72.094983y-85.51=0
a = 51; b = 72.094983; c = -85.51;
Δ = b2-4ac
Δ = 72.0949832-4·51·(-85.51)
Δ = 22641.72657377
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72.094983)-\sqrt{22641.72657377}}{2*51}=\frac{-72.094983-\sqrt{22641.72657377}}{102} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72.094983)+\sqrt{22641.72657377}}{2*51}=\frac{-72.094983+\sqrt{22641.72657377}}{102} $
| 32+6n=-n-4(-2n-8) | | 6k-5k=-4-6k-4k | | 75.19+16.95y(0.008043-y)=100-9.76y(1+y) | | 8x+31=6x+5(1+3x) | | -14+6n=-4+8n | | (2x+25)=(5x10) | | 10.2+18.18y(0.00733-y)=100-73.53y(1+y) | | -4n-28=-7(4-5n) | | 7(1-5k)=8k-36 | | 14x-127=5x-10 | | y^2-55y+30=0 | | 82.64+13.33y(0.015201-y)=100-5.97y(1+y) | | 34/6=c/57 | | x+(x+1)+2(x+3)=18 | | -26+4x=-52+4x | | x+(x+1)+2(x+2)=18 | | 65.36+21.74y(0.004856-y)=100-14.49y(1+y) | | -6(x-5)=22-6x | | x+(-8)=-18 | | -7a-20=3-6(7a-2) | | 3(k+6)=5(k+2) | | 6a-23=-8(-4-8a)-3a | | 3x+2+3x+6=-76 | | -17+2x=5(-6x+3) | | 6x+8=-76 | | -x+28=-8x-3(1+8x) | | 3(b+4)+1=b+25 | | 100=w(20-10)/5 | | 2x+x+3x+6x=180 | | 5x+9=45x= | | -(1-3k)=-5+3k | | 75.19+17.86y(0.008565-y)=100-8.7y(1+y) |