If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14.93+19.61y(0.00451-y)=100-75.76y(1+y)
We move all terms to the left:
14.93+19.61y(0.00451-y)-(100-75.76y(1+y))=0
We add all the numbers together, and all the variables
19.61y(-1y+0.00451)-(100-75.76y(y+1))+14.93=0
We multiply parentheses
-19y^2+0.08569y-(100-75.76y(y+1))+14.93=0
We calculate terms in parentheses: -(100-75.76y(y+1)), so:We get rid of parentheses
100-75.76y(y+1)
determiningTheFunctionDomain -75.76y(y+1)+100
We multiply parentheses
-75y^2-75y+100
Back to the equation:
-(-75y^2-75y+100)
-19y^2+75y^2+75y+0.08569y-100+14.93=0
We add all the numbers together, and all the variables
56y^2+75.08569y-85.07=0
a = 56; b = 75.08569; c = -85.07;
Δ = b2-4ac
Δ = 75.085692-4·56·(-85.07)
Δ = 24693.540842776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75.08569)-\sqrt{24693.540842776}}{2*56}=\frac{-75.08569-\sqrt{24693.540842776}}{112} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75.08569)+\sqrt{24693.540842776}}{2*56}=\frac{-75.08569+\sqrt{24693.540842776}}{112} $
| 5×+3y=1 | | (9x-2)(x-4)=0 | | x=4,x=2 | | 44.4+29.9y(0.00214-y)=100-35.1y(1+y) | | A+b=55 | | 3y+9=5y+7 | | x+2x=15000000 | | 9x^2+36x-405=0 | | 21y+3=5y-5 | | 100+4*x=420 | | 3n+2n+1=4 | | 18/x+18/42=1 | | 7q-3(4-q)=28 | | 1/m-4(m+4)m=8 | | 2(x+7)=87 | | -x–8=-17. | | x+2=9. | | -6x=-12. | | x+3=8. | | -2x+6=12. | | 3h-2.8=5.3 | | x+4=7. | | 3h-2(h-1=10) | | 0.3=840,000/x | | 3h-2(h-1=10 | | A=46a+3= | | 2(z+5)+4z=28 | | N/n+5=37 | | 5n+1=37 | | 32=3+17n | | x=10*3-5(9*3=27)+2 | | x=10*3-5 |