140=(x+4)(x+9)

Simple and best practice solution for 140=(x+4)(x+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 140=(x+4)(x+9) equation:



140=(x+4)(x+9)
We move all terms to the left:
140-((x+4)(x+9))=0
We multiply parentheses ..
-((+x^2+9x+4x+36))+140=0
We calculate terms in parentheses: -((+x^2+9x+4x+36)), so:
(+x^2+9x+4x+36)
We get rid of parentheses
x^2+9x+4x+36
We add all the numbers together, and all the variables
x^2+13x+36
Back to the equation:
-(x^2+13x+36)
We get rid of parentheses
-x^2-13x-36+140=0
We add all the numbers together, and all the variables
-1x^2-13x+104=0
a = -1; b = -13; c = +104;
Δ = b2-4ac
Δ = -132-4·(-1)·104
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3\sqrt{65}}{2*-1}=\frac{13-3\sqrt{65}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3\sqrt{65}}{2*-1}=\frac{13+3\sqrt{65}}{-2} $

See similar equations:

| 1/6(12z+18)=2z-3 | | 5(6x-1)=49 | | 4/75=x/250 | | 2/3+(9x-6)=4x+10 | | 21x-12x=9 | | x-155+5=180 | | 3x2-196=217x | | 3a-15-4a-1=2 | | 69n+5)=66 | | 19x+4=25x | | 3.9x-4.76=8.5 | | 1/6912z+18)=2z+-3 | | -3x+15-4x-2=-8 | | 1/3r+1/4=5/12 | | x-155°+5°=180 | | 3/k=-20/35 | | 5x-x=4x+2 | | |3n-2|=1/2 | | -4x+7=71 | | n/10-3/10=1/5 | | 4/8=b/15 | | 3x-19=2x | | 6(m-1)=3(3m+5 | | n/5-3/10=1/5 | | 64=8t-8 | | 5(2y-9)-7y+36=-724 | | 1/5(15b+-7=3b+-9 | | -0.10(68)+0.85x=0.05(x-8) | | -7(2z+4)=24 | | 7/9x=38 | | -2(x+3)=-3(7x-4)+7x | | 4.6x^2+11x=26 |

Equations solver categories