If it's not what You are looking for type in the equation solver your own equation and let us solve it.
141+x2=216
We move all terms to the left:
141+x2-(216)=0
We add all the numbers together, and all the variables
x^2-75=0
a = 1; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·1·(-75)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1}=\frac{0-10\sqrt{3}}{2} =-\frac{10\sqrt{3}}{2} =-5\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1}=\frac{0+10\sqrt{3}}{2} =\frac{10\sqrt{3}}{2} =5\sqrt{3} $
| 6g-6=60 | | b+4/11=2 | | 5a=20.5 | | 3+4(z+5Z)=31 | | 2x+1+3x+19=180 | | b+411=2 | | 1/2x-2=2(x+1) | | 3(s+2)+s=38 | | 8(4x+4)-2=158 | | s+3/1/2s+10s=37 | | 9u+3=-42 | | B/17-3b/17=10/10 | | 35=-5+2x | | -21-6x=-1-4x | | s+31/2s+10s=37 | | 2r+7=19 | | 4(v-3)=-20 | | f2=0.09 | | 6d+6=12 | | 7(4x+4)-2x=158 | | 2(b+4)=10 | | 10=n-8-7n | | 6(w-6)=4w-40 | | 3x-6/5=x/2 | | -5u-15=5(u-1) | | -5(y-3)=-3y-1 | | -9u+48=3(u-8) | | -3m-32m=12 | | 17=-5(3=w)=7 | | 9(u-6)=7u-44 | | 18p+10=10 | | -6y+24=-4(y-1) |