If it's not what You are looking for type in the equation solver your own equation and let us solve it.
142=5t^2
We move all terms to the left:
142-(5t^2)=0
a = -5; b = 0; c = +142;
Δ = b2-4ac
Δ = 02-4·(-5)·142
Δ = 2840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2840}=\sqrt{4*710}=\sqrt{4}*\sqrt{710}=2\sqrt{710}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{710}}{2*-5}=\frac{0-2\sqrt{710}}{-10} =-\frac{2\sqrt{710}}{-10} =-\frac{\sqrt{710}}{-5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{710}}{2*-5}=\frac{0+2\sqrt{710}}{-10} =\frac{2\sqrt{710}}{-10} =\frac{\sqrt{710}}{-5} $
| x²-3x³=5x | | 2x+2=1.5x+7 | | x12-3=30 | | 3x+5(30-x)=30(4.2) | | 4+5(m-3)=29 | | b12-3=30 | | 16x^2+28x=5 | | 2/9n-7/9=5/9 | | 5p/2=10 | | .45(60)=x | | 34+6u=–44 | | 4w-w=3w | | 5x-13+140*2=180 | | x*0.9=128000 | | (3/4)x+(5/6)=5x-(125/3) | | 5/9=40/n | | 15a+30(24-a)=20(24) | | (1/x)5x=-10+(195/x) | | 4(x)=200 | | 19.2=u6 | | 62-7x=20 | | 2x-0.08=18 | | 5d+82=697 | | -2+n+10=-4 | | 3x+-6+8x+4+130=360 | | 7m^2+42m-112=0 | | 1.5x+7=2.5x | | 14y/14=99/14 | | x+10+4x+5=90 | | 5y+8=3Y-0 | | 5e+25=50 | | 2,346=23(p+25) |