143=(2x+10)(2x+8)

Simple and best practice solution for 143=(2x+10)(2x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 143=(2x+10)(2x+8) equation:



143=(2x+10)(2x+8)
We move all terms to the left:
143-((2x+10)(2x+8))=0
We multiply parentheses ..
-((+4x^2+16x+20x+80))+143=0
We calculate terms in parentheses: -((+4x^2+16x+20x+80)), so:
(+4x^2+16x+20x+80)
We get rid of parentheses
4x^2+16x+20x+80
We add all the numbers together, and all the variables
4x^2+36x+80
Back to the equation:
-(4x^2+36x+80)
We get rid of parentheses
-4x^2-36x-80+143=0
We add all the numbers together, and all the variables
-4x^2-36x+63=0
a = -4; b = -36; c = +63;
Δ = b2-4ac
Δ = -362-4·(-4)·63
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-48}{2*-4}=\frac{-12}{-8} =1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+48}{2*-4}=\frac{84}{-8} =-10+1/2 $

See similar equations:

| 2y+3y=3 | | 4d-7-12=23 | | .2x=120 | | 15=v/3=-9 | | 6(c-2)=20 | | 6(y+3)=84 | | 3(x-5)^2+2=434 | | 18+3x=-4 | | 5(x-20)=-8(2-2x)-3x | | 4x=75x+x | | -7/b-2=10 | | 25^v-1=625 | | 4h(3h+8)=0 | | 7÷n=14 | | 3+n=4+5 | | -24-6y=-12 | | 3(v+6)=-2(8v-5)=5v | | x/2+5/6=2 | | 3m+2=2 | | 5(2x-1)+4=6(3x+2)-7 | | 8x-12=2(3x+4) | | 4(n-7)=20 | | 30+30x+20+3(x-2)=8x-(6x-2)+10x | | 16-2j=5j+9 | | 100(1.15)^x=350-5x | | 16-2j=5j | | 3^{x-2}=43 | | 4x-19=3x-1 | | -2x-6+5x=-15 | | 5-3=6-(x+6)-x | | 7^x=75 | | 2(4x-1)-6x+4=1 |

Equations solver categories