144=(x-2)(2x-1)

Simple and best practice solution for 144=(x-2)(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 144=(x-2)(2x-1) equation:



144=(x-2)(2x-1)
We move all terms to the left:
144-((x-2)(2x-1))=0
We multiply parentheses ..
-((+2x^2-1x-4x+2))+144=0
We calculate terms in parentheses: -((+2x^2-1x-4x+2)), so:
(+2x^2-1x-4x+2)
We get rid of parentheses
2x^2-1x-4x+2
We add all the numbers together, and all the variables
2x^2-5x+2
Back to the equation:
-(2x^2-5x+2)
We get rid of parentheses
-2x^2+5x-2+144=0
We add all the numbers together, and all the variables
-2x^2+5x+142=0
a = -2; b = 5; c = +142;
Δ = b2-4ac
Δ = 52-4·(-2)·142
Δ = 1161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1161}=\sqrt{9*129}=\sqrt{9}*\sqrt{129}=3\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{129}}{2*-2}=\frac{-5-3\sqrt{129}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{129}}{2*-2}=\frac{-5+3\sqrt{129}}{-4} $

See similar equations:

| 3x-2x-5x=9-2-25 | | 144=2x^2-5x+2 | | 4x+15=6x+10 | | 2x+3/2=3×-2/8 | | 1x+2/3=2x+2/3 | | (11x-33/(x-3))=x | | 0.5x-12=1200 | | 50x=1-x | | -3b-6b+7b=6 | | 11j=12=1200 | | 2x-7+13=90 | | 9m-8=91 | | R(p)=-25p^2+170p | | (7z-4)=(5z+20) | | 4+7p=60 | | 33=(1/2)h*11 | | 5=68/x | | m÷9-17=21 | | A=x-54/x-15 | | 33=(1/2)h(9) | | 6x=15x+33 | | 79+c=180 | | 9y+y=9y2 | | 37=-8-5x | | 3=(m)/(12) | | 1/5+2/3x=x-2 | | 18x+11+105+82=360 | | (1/5)+(2/3)x=x-2 | | 5+x+4=90 | | 16x=2x+4 | | (5/2)+(5/2)y=2y-3 | | 3x-16+8x-1=180 |

Equations solver categories