If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144=n2
We move all terms to the left:
144-(n2)=0
We add all the numbers together, and all the variables
-1n^2+144=0
a = -1; b = 0; c = +144;
Δ = b2-4ac
Δ = 02-4·(-1)·144
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*-1}=\frac{-24}{-2} =+12 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*-1}=\frac{24}{-2} =-12 $
| 2y=16+4 | | 11+h=11 | | 8(4s+9)=264 | | 14^x=91 | | 4(2l+4)=48 | | -s5+6=7 | | -3(y+1)=3y-1+2(5y+5) | | 2(y-2)-3=-5(-3y+5)-3y | | -5.73x=97.41X= | | 3(n+6)-2n=-3n-3(-5n-6) | | -2(5x-3)+x=5(x+2) | | -5.73x=94.71 | | 5f+7=4f+11 | | 90=(3y+22) | | 4{n-3}+1=33 | | 3x+529=5 | | -(1-7b)=-5(-4b-5) | | 12x^2-42x+36=0 | | X=(1350+x)*0.1 | | 30=-5(6x+6 | | 30=-5(6x | | 77=d-67 | | 17=w+45 | | 30=1/2(5x+10-3x+4) | | 106=(3y+22)+4y | | 50+g=120 | | 6x+2=2x-22 | | 0.4n=32 | | 450=4x | | x+0.7x=154 | | x-0.7x=154 | | 56+x+52+78=180 |