If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144b^2=36
We move all terms to the left:
144b^2-(36)=0
a = 144; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·144·(-36)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144}{2*144}=\frac{-144}{288} =-1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144}{2*144}=\frac{144}{288} =1/2 $
| 11x-23+46=180 | | 2x+2.4=4.8 | | 2.5x=6.8 | | x/(-2)+11=5 | | -2x=(-8)=2x+8 | | 6=4x-3+5x | | 5.25=0.75(b-2) | | 7u+7=19u+61 | | x8+x=9 | | 4x+9=51-3x | | 4-3^x=7-5^x | | 3x+25×2x=180 | | 13(x+20)=1040 | | 50x-25=125 | | 10+48x=7x+10 | | x+7/12x+7=12.5 | | 167+3x=208-2x | | −x−4=35x+4 | | -5x+8=72 | | -4+(z/2)=16 | | 1/2r=36 | | 9.9x0.8=x | | 3y+5(2y-4)=2y+2 | | -5x−1=40 | | 3y+(2y-4)=2y+2 | | 4/3+v/2=5/2 | | 7+7y=49 | | p^2+2p+-24=0 | | 23x−3=−2x+5 | | 6+12t-6=3=12t | | 1=12x7= | | -3(1=n)-2n=-6(n-2) |