1482=n(n+1)

Simple and best practice solution for 1482=n(n+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1482=n(n+1) equation:



1482=n(n+1)
We move all terms to the left:
1482-(n(n+1))=0
We calculate terms in parentheses: -(n(n+1)), so:
n(n+1)
We multiply parentheses
n^2+n
Back to the equation:
-(n^2+n)
We get rid of parentheses
-n^2-n+1482=0
We add all the numbers together, and all the variables
-1n^2-1n+1482=0
a = -1; b = -1; c = +1482;
Δ = b2-4ac
Δ = -12-4·(-1)·1482
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5929}=77$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-77}{2*-1}=\frac{-76}{-2} =+38 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+77}{2*-1}=\frac{78}{-2} =-39 $

See similar equations:

| 16(2x-7)=4(6x+1) | | 3(4x-8)=12(x-12) | | 7(2n+1)=9(9n+8)+1 | | x+5/8=x/4+20 | | 6x+6-180=2x | | 6x+6/180=2x | | -29x+-31x+21x+28x+21x=30 | | 5x+(945^4)=x+5+5+5+5+5+x+5+x+5+x+5+x+5+x | | 3(x-6)-3=-3(-5x+3)-4x | | 4(x+4)+8=x+4 | | 6x+6=180-2x | | 6x+6=180+2x | | 0.50x+0.05(12-x)=0(-3) | | 6x+6x=2x | | 0.06(y-8)+0.20y=0.10y-1.8 | | 9(x^2-2/3-1/3)=0 | | 9/k-5=6/k | | 6x+6+2x=2x | | G(n)=3n^2-2n | | 6-2x/9=2/3 | | 3x/5+2/5=4/3-2x/3 | | 8(2x/5)=8(12/8) | | -2y-7=3y+8 | | 7-8(2+2)=9+a | | F(-6)=5x^2-7 | | (7b-2)(b+3)=0 | | 5x-x/3-1/3=6x+6/30 | | 5(2m+3)-4m=2m-25 | | 150=16/n | | 20-30x=3x+21 | | 3y-1÷2=7 | | 0-3.2x=6 |

Equations solver categories