If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14=(155/360)(2*3.14159265359x)
We move all terms to the left:
14-((155/360)(2*3.14159265359x))=0
Domain of the equation: 360)(2*3.14159265359x))!=0We add all the numbers together, and all the variables
x∈R
-((+155/360)(+2*3.14159265359x))+14=0
We multiply parentheses ..
-((+930x^2))+14=0
We calculate terms in parentheses: -((+930x^2)), so:a = -930; b = 0; c = +14;
(+930x^2)
We get rid of parentheses
930x^2
Back to the equation:
-(930x^2)
Δ = b2-4ac
Δ = 02-4·(-930)·14
Δ = 52080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52080}=\sqrt{16*3255}=\sqrt{16}*\sqrt{3255}=4\sqrt{3255}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3255}}{2*-930}=\frac{0-4\sqrt{3255}}{-1860} =-\frac{4\sqrt{3255}}{-1860} =-\frac{\sqrt{3255}}{-465} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3255}}{2*-930}=\frac{0+4\sqrt{3255}}{-1860} =\frac{4\sqrt{3255}}{-1860} =\frac{\sqrt{3255}}{-465} $
| -6+3x-4x=-18 | | 6x+238=3x | | v2–1=0 | | 8y=32768 | | 155/360=14/(2*3.14159265359*x) | | 2v2+2=0 | | -42-8x=-154 | | 6x-2x=4x+12 | | 2(x+5)-10x=85 | | x=40*1/8 | | x=5x+36 | | (256−247)(4x−19)=5x+14 | | 2x-5(x-3)=-7+3x-26 | | x/7+10=-20 | | -14=5(u-6)-7u | | 50(14+8a)=9a | | 3(4k-3)=-1+12k | | 2v-2=-16 | | 3w=w+ | | k=–28. | | -7(2-8x)=378 | | 5x+3(5/4x-5/2)=20 | | 3(4k−3)=−1+12k | | b-2/3=-2 | | 9=h-13/6 | | 5x+3+8=6 | | 4x-24°=x | | 35-v=19 | | 6-8(3m+8)=-202 | | 4x+20=3x-25 | | 125-2x=43x+20 | | 9=2(r+1)+3 |