14a(3a-2)=2(2.5a+1)-(a-1)

Simple and best practice solution for 14a(3a-2)=2(2.5a+1)-(a-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14a(3a-2)=2(2.5a+1)-(a-1) equation:



14a(3a-2)=2(2.5a+1)-(a-1)
We move all terms to the left:
14a(3a-2)-(2(2.5a+1)-(a-1))=0
We multiply parentheses
42a^2-28a-(2(2.5a+1)-(a-1))=0
We calculate terms in parentheses: -(2(2.5a+1)-(a-1)), so:
2(2.5a+1)-(a-1)
We multiply parentheses
4a-(a-1)+2
We get rid of parentheses
4a-a+1+2
We add all the numbers together, and all the variables
3a+3
Back to the equation:
-(3a+3)
We get rid of parentheses
42a^2-28a-3a-3=0
We add all the numbers together, and all the variables
42a^2-31a-3=0
a = 42; b = -31; c = -3;
Δ = b2-4ac
Δ = -312-4·42·(-3)
Δ = 1465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{1465}}{2*42}=\frac{31-\sqrt{1465}}{84} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{1465}}{2*42}=\frac{31+\sqrt{1465}}{84} $

See similar equations:

| 28=1/2(124-x) | | -x+10=(1/2)x+1 | | 3=6/5a | | X^2=16x+336 | | 3(7v+2)=-99 | | 180=-w+90 | | (x+1)/2+(x+4)/5=2 | | 25x^2-35=5x^2+125 | | -u+283=44 | | -105=-3(6x-7) | | 294-w=231 | | 2x+3+2x+2x+3+2x+2x+3+2x=36 | | -8x-10x=-18 | | 8(8x-6)=272 | | Y=(8x-1)/(2x+3) | | 72-40=8x+17-5x | | 20x^2-160=0 | | 10f+10=90 | | (x)=x2-6x-7 | | 5t-(2t=14)=3t-14 | | 52-18=x+22 | | 2x²-4x=37 | | 5t(2t=14)=3t-14 | | -5z-14z=19 | | 77/x=7 | | 38-8÷4=x | | 3x=6√17 | | √5x+1=0 | | 13x-1=2x-7 | | (√5x)+1=0 | | (38-8)÷4=x | | 5x(x+4)=3x+8 |

Equations solver categories