If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14e+8e^2-15=0
a = 8; b = 14; c = -15;
Δ = b2-4ac
Δ = 142-4·8·(-15)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-26}{2*8}=\frac{-40}{16} =-2+1/2 $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+26}{2*8}=\frac{12}{16} =3/4 $
| (x)(2x^2)-(1.3E-18)=0 | | 2-7v=-6v+7 | | 15d2-29d+12=0 | | (x)(2x^2)-(1.3x10^-18)=0 | | -1/3+2=2/3x-1 | | -8n+3=-6n+9 | | (X-3)÷71=2x | | 8+6r=2r | | Ax8=14x10 | | -6v-10=-8v | | -11+25t-9.8t^2=0 | | 4t=3t-7 | | 1=5t^2−4t+4 | | X÷y=0.172 | | X÷y=0.173 | | 5/4y=1/2 | | -4x-36=2(5x-4) | | -63=10x | | 2/3(12x+8)=× | | 13n=182 | | 0.5x–1.6=–1.6x–18.4 | | 0.5x–1.6=–1.6x–18.4 | | 4/7w=2 | | (−8s−5)(−5s−4)=0 | | 91=1/2(7)(12+b | | -(4x-16)=32 | | 7p-8=8+5p | | 12x+9=x-13 | | 3(10x+5)=285 | | 3x-13+(x+15)*4=180 | | 3x^2-4x/6=20x | | 3x-13(x+15)*4=180 |