If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14u^2+23u=3
We move all terms to the left:
14u^2+23u-(3)=0
a = 14; b = 23; c = -3;
Δ = b2-4ac
Δ = 232-4·14·(-3)
Δ = 697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{697}}{2*14}=\frac{-23-\sqrt{697}}{28} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{697}}{2*14}=\frac{-23+\sqrt{697}}{28} $
| S=-16t^2+28t+9 | | -6y+3=-57 | | 9x-+2=83 | | 5x(3x^2-5)=0 | | w-25=50 | | 39+32+x=180 | | 103-x=1 | | 36x^2-4x+16=0 | | x/8+12=10 | | 1/2+3x=1/3(x-6) | | 8z+4=4(2z+1) | | 2(n-4)=4(n-2) | | 2/5n+6=2 | | 3n+13=40 | | 3x^2+31+36=0 | | -5y+7=42 | | 5.4x+35=6.9x+20 | | -5(x-11)=-75 | | 9x^2-x+4=0 | | y+3(-2)=10 | | 2x-5(x-5)=-2+4x-29 | | 12−5/1r=2r+1 | | -4(6x+1)=-24x+4 | | 26=w-14 | | 2x-5x-15=2+5x-31 | | (x+8)+(3x+24)=90 | | 8/16t=-8 | | 4+x/3+10=-1 | | x+6+33÷2=7x | | x+6+33÷2=0 | | -16x^2+96x+3=0 | | g=-6/66 |