If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14u^2-56u=0
a = 14; b = -56; c = 0;
Δ = b2-4ac
Δ = -562-4·14·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-56}{2*14}=\frac{0}{28} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+56}{2*14}=\frac{112}{28} =4 $
| 0.00012=x^2-1.2*10^-2 | | 2x-6=5×+9 | | 20y+100y2=0 | | 12a2+36a=0 | | 11d2-33d=0 | | 2x-4=3(2x) | | 54n2+36n=0 | | 5x+10=2x+41 | | 3/4x-1/3=3x+1/2 | | 2^9a-2=63 | | 27u2-15u=0 | | 5/7=y/11 | | -11×-7y=56 | | 6t+30t2=0 | | 15–2x=75 | | 31=10j-9 | | 2y-6=6× | | W=98w+115(15-w) | | 8=17-3h | | 5x2-30x=0 | | 49=3s+16 | | 1=4-3h | | 13w+39w2=0 | | 0=8x-70 | | 9=19-5v | | 5y^2+6=-86 | | 7=5r-13 | | 0.8x-1.4=-9.4 | | 8k+72k2=0 | | ((1)/(2))^(7x+1)=-9 | | 1/4x+14=34 | | A(x)=x(300-2x) |