If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 14x * 3x = 56 + -18x Reorder the terms for easier multiplication: 14 * 3x * x = 56 + -18x Multiply 14 * 3 42x * x = 56 + -18x Multiply x * x 42x2 = 56 + -18x Solving 42x2 = 56 + -18x Solving for variable 'x'. Reorder the terms: -56 + 18x + 42x2 = 56 + -18x + -56 + 18x Reorder the terms: -56 + 18x + 42x2 = 56 + -56 + -18x + 18x Combine like terms: 56 + -56 = 0 -56 + 18x + 42x2 = 0 + -18x + 18x -56 + 18x + 42x2 = -18x + 18x Combine like terms: -18x + 18x = 0 -56 + 18x + 42x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-28 + 9x + 21x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-28 + 9x + 21x2)' equal to zero and attempt to solve: Simplifying -28 + 9x + 21x2 = 0 Solving -28 + 9x + 21x2 = 0 Begin completing the square. Divide all terms by 21 the coefficient of the squared term: Divide each side by '21'. -1.333333333 + 0.4285714286x + x2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + 0.4285714286x + 1.333333333 + x2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + 0.4285714286x + x2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + 0.4285714286x + x2 = 0 + 1.333333333 0.4285714286x + x2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 0.4285714286x + x2 = 1.333333333 The x term is 0.4285714286x. Take half its coefficient (0.2142857143). Square it (0.04591836735) and add it to both sides. Add '0.04591836735' to each side of the equation. 0.4285714286x + 0.04591836735 + x2 = 1.333333333 + 0.04591836735 Reorder the terms: 0.04591836735 + 0.4285714286x + x2 = 1.333333333 + 0.04591836735 Combine like terms: 1.333333333 + 0.04591836735 = 1.37925170035 0.04591836735 + 0.4285714286x + x2 = 1.37925170035 Factor a perfect square on the left side: (x + 0.2142857143)(x + 0.2142857143) = 1.37925170035 Calculate the square root of the right side: 1.174415472 Break this problem into two subproblems by setting (x + 0.2142857143) equal to 1.174415472 and -1.174415472.Subproblem 1
x + 0.2142857143 = 1.174415472 Simplifying x + 0.2142857143 = 1.174415472 Reorder the terms: 0.2142857143 + x = 1.174415472 Solving 0.2142857143 + x = 1.174415472 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + x = 1.174415472 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + x = 1.174415472 + -0.2142857143 x = 1.174415472 + -0.2142857143 Combine like terms: 1.174415472 + -0.2142857143 = 0.9601297577 x = 0.9601297577 Simplifying x = 0.9601297577Subproblem 2
x + 0.2142857143 = -1.174415472 Simplifying x + 0.2142857143 = -1.174415472 Reorder the terms: 0.2142857143 + x = -1.174415472 Solving 0.2142857143 + x = -1.174415472 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + x = -1.174415472 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + x = -1.174415472 + -0.2142857143 x = -1.174415472 + -0.2142857143 Combine like terms: -1.174415472 + -0.2142857143 = -1.3887011863 x = -1.3887011863 Simplifying x = -1.3887011863Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.9601297577, -1.3887011863}Solution
x = {0.9601297577, -1.3887011863}
| 4k-4=8 | | X^2+6x-29=0 | | 4k+4=8 | | 4(2m+3)=28 | | 7x=6x+3 | | 3s+1=7 | | 3(110-77x)=x-66 | | 40n^2+64n= | | 3(m-5)=-30 | | 9x-63=-8x+5 | | 8=2x+2 | | 2(5x+3)=4x+18 | | -2x^2+2x+1=0 | | 7x+2x=42 | | (4+3Y^4+V)-(4V^4+7-5V)=0 | | -2x-15=x | | 4(-8+y+6)=4 | | 35n-6=99 | | 3x^2+11-4x=0 | | 5x-112=4x+28 | | 3x+4-x=5x-10-x | | 7(2x-3)-4(3x-5)=4+6x-13 | | 16=2n+2 | | x^2+y^2+4x+2y+3=0 | | 8x+37=14x+15-8x | | 4(3x-2)=-2(x+4) | | 4a+10=2a-3 | | 9x-32=x | | 6=x-3 | | 5=b+6 | | Y=7x+5 | | 12(x+3)=15-4 |