If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+14x=0
a = 14; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·14·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*14}=\frac{-28}{28} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*14}=\frac{0}{28} =0 $
| 8c+5=9c | | -9p+7=-8p | | 2(2+-3)=6(r+2) | | 19w-20=19+4w+18w | | 2(x+5)-2=3x-2x+10 | | 3/8x-4=1/8x-8 | | -3/1m+1=-7 | | 19+-0.5y+y=20 | | 5x-15=-13+7x | | 2z+2+3z=114 | | -6x-9=5 | | n-20=-41 | | 3d-12=6 | | -3x32=5 | | 2-2(x-9)=20 | | x-3/6=4 | | -2(h-9)=-20 | | 4(x+10/5=2x-4 | | 6(x+3)-4x=-7(5x+8) | | -6z=8-8z | | 2=3-c | | 9x(2+7)=(x2)+(x7) | | 5-6v=-5v | | a/2+13=9 | | 3s+2=s+5 | | 10-2=1x+10 | | -4(2x+3)=10x+11 | | 9x(2+7)=(x2)+(x7 | | 7x-1=x+23 | | -10+11y=13y | | -7=3m-8 | | 8c=5c+2 |