If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+23x+3=0
a = 14; b = 23; c = +3;
Δ = b2-4ac
Δ = 232-4·14·3
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-19}{2*14}=\frac{-42}{28} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+19}{2*14}=\frac{-4}{28} =-1/7 $
| X+3/2=5x-1/4 | | -7-6(x+4)=-13 | | 8m-5(m-2)-7=0 | | n/9=2/6 | | (7x-10)^-3/5=0 | | 2b—9=1 | | t^2-3t-304=0 | | (7x-10)^-3/5=25/14 | | 8(3x+4)=24x-5 | | 10x+8-29=9 | | d-35/12=25/6 | | x^2+2x+1=16x-47 | | 9x-2=128 | | 5(p-5)+4=-6+5(-1-p) | | t^2-3t-340=0 | | 250-4d=90 | | -8.25x^2+66x=0 | | 7/10=h+7/10 | | -2z+5z+4=25 | | 105=8r+60-7r | | x+(2x-5)+(x-3)=78 | | 84x(x+2)=0 | | 84x(x+2=0 | | -7(-6m-6)-5=-5(m+2) | | 35a-28-1=14-a | | 2x-3=1/12 | | 5+2/7(x+4)+10=2(5-3,5) | | 22y+6=75 | | 6x^2-25x+14x=0 | | 6(x-3)+1=-17 | | 2(x-1)=1=-5 | | 2t-9=5t+4 |