If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+36x-60=0
a = 14; b = 36; c = -60;
Δ = b2-4ac
Δ = 362-4·14·(-60)
Δ = 4656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4656}=\sqrt{16*291}=\sqrt{16}*\sqrt{291}=4\sqrt{291}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{291}}{2*14}=\frac{-36-4\sqrt{291}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{291}}{2*14}=\frac{-36+4\sqrt{291}}{28} $
| 907y+333y=-36 | | (50+x=)×112 | | X=(50x)112 | | 6x=90-4x | | -3(-x+5)+20=-10(x-3)+4 | | 1400=14(60+x)+x | | 1-0.4^x=0.9 | | x/9+3=1 | | 2(x-3)-3(2x+1)=3 | | 7x+40=9x-56 | | 5x-3=3x+12 | | 1.07^x=100 | | 13=4-n | | -2x+1=-4x+7 | | a*2+5=1 | | -2x+1=-4x-6 | | (D^3+4D^2+D-6)y=0 | | 2l/5=5/2 | | 12/3a-6=41/3a-10 | | 12/3a-6=41/3-10 | | 2x*23+19*32=32x*2+30-64 | | 10p/4=20 | | x*0,92=2000 | | 3=4(p-5) | | 2x^2-2x+6=2x+13 | | 3x-13=(-4) | | -4.2x+20=3.5x-33.9 | | -3x+7x=x+15 | | 4x-(x+5)=3+(x-2) | | x-4=-2x-8 | | f+93=8 | | x-0.5=-2x+1 |